IMPLEMENTASI FORECASTING PADA PERENCANAAN SISTEM PEMESANAN BUKU LKS (LEMBAR KERJA SISWA) MENGGUNAKAN ALGORITMA REGRESI LINEAR. (STUDI KASUS: TOKO BUKU DARUL ULUM, PUNGGUR, LAMPUNG TENGAH

Permata permata

Abstract


Darul Ulum Bookstore is engaged in distributing LKS books to be sent to schools. The need for worksheets that support learning is one of the most important aspects of availability in the store. so it takes sufficient stock in the order at the beginning of the semester. In this case, the shop owner has difficulty in estimating the number of books to be ordered, so a calculation model is needed to estimate how many books will be ordered at the beginning of the semester. The Multiple Linear Regression method is one of the methods used to predict how many books will be ordered. This method uses the dependent variable and the independent variable as the basis by taking into account the initial stock of books for 2018 and 2019 as the independent variable (x) and the initial stock of 2020 as the dependent variable (y). The results of this study obtained a predictive accuracy value from each printing, namely for CV. Hasan Pratama with MAPE testing of 6.42% with very good indicators. CV. Pratama Mitra Aksara with MAPE testing of 23.52% the results of the indicators are feasible, and CV. Pilar Pustaka with MAPE testing of 6.75% the indicator results are very good. And visualization of predictive data using R-Markdown.

 

Keywords: Linear Regression, Predicting, Interactive Website, R-Markdown

Full Text:

PDF

References


T. Jaringan, D. A. Pohan, and M. H. Dar, “InfoTekJar : Jurnal Nasional Informatika dan Penerapan Data Mining untuk Prediksi Penjualan Produk Sepatu Terlaris Menggunakan Metode Regresi Linier Sederhana,” vol. 2, pp. 2–6, 2022.

E. Pemanfaatan and L. Kerja, “54 | Efektivitas Pemanfaatan Lembar Kerja Siswa (LKS),” pp. 54–69, 2014.

A. Fitri Boy, “Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil (CPO) Pasar Domestik Menggunakan Algoritma Regresi Linier Berganda (Studi Kasus Dinas Perkebunan Provinsi Sumatera Utara),” J. Sci. Soc. Res., vol. 4307, no. 2, pp. 78–85, 2020, [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR.

D. S. O. Panggabean, E. Buulolo, and N. Silalahi, “Penerapan Data Mining Untuk Memprediksi Pemesanan Bibit Pohon Dengan Regresi Linear Berganda,” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 1, p. 56, 2020, doi: 10.30865/jurikom.v7i1.1947.

F. Ginting, E. Buulolo, and E. R. Siagian, “Implementasi Algoritma Regresi Linear Sederhana Dalam Memprediksi Besaran Pendapatan Daerah (Studi Kasus: Dinas Pendapatan Kab. Deli Serdang),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 274–279, 2019, doi: 10.30865/komik.v3i1.1602.

N. L. N. M. Wedasari, “Perancangan Prediksi Persediaan Barang Pada Andis Griya Kebaya,” Konf. Nas. Sist. Inform., pp. 1021–1026, 2015.

D. Sorenson, “a Web App for Predicting Voluntary Employee Attrition Using R Shiny & Rstudio,” 2020.




DOI: https://doi.org/10.33365/jdmsi.v3i2.2162

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Permata permata

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Organized by: The S1 Information Systems Study Program, Faculty of Engineering and Computer Science

Published by: Universitas Teknokrat Indonesia

Website: https://ejurnal.teknokrat.ac.id/index.php/JDMSI

Email: jdmsi@teknokrat.ac.id

Address: ZA. Pagar Alam Street No. 9 -11, Labuhan Ratu, Bandar Lampung, Indonesia 35132

Creative Commons License
Article Publish in Jurnal Data Mining dan Sistem Informasi are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.